Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Immunol ; 14: 1048790, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993968

RESUMO

COVID-19 induces chromatin remodeling in host immune cells, and it had previously been shown that vitamin B12 downregulates some inflammatory genes via methyl-dependent epigenetic mechanisms. In this work, whole blood cultures from moderate or severe COVID-19 patients were used to assess the potential of B12 as adjuvant drug. The vitamin normalized the expression of a panel of inflammatory genes still dysregulated in the leukocytes despite glucocorticoid therapy during hospitalization. B12 also increased the flux of the sulfur amino acid pathway, that regulates the bioavailability of methyl. Accordingly, B12-induced downregulation of CCL3 strongly and negatively correlated with the hypermethylation of CpGs in its regulatory regions. Transcriptome analysis revealed that B12 attenuates the effects of COVID-19 on most inflammation-related pathways affected by the disease. As far as we are aware, this is the first study to demonstrate that pharmacological modulation of epigenetic markings in leukocytes favorably regulates central components of COVID-19 physiopathology.


Assuntos
COVID-19 , Vitamina B 12 , Humanos , Vitamina B 12/farmacologia , Vitamina B 12/metabolismo , Metilação de DNA , Epigênese Genética , Leucócitos/metabolismo
2.
Noncoding RNA ; 8(5)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36287120

RESUMO

Long noncoding RNAs (lncRNAs) undergo splicing and have multiple transcribed isoforms. Nevertheless, for lncRNAs, as well as for mRNA, measurements of expression are routinely performed only at the gene level. Metformin is the first-line oral therapy for type 2 diabetes mellitus and other metabolic diseases. However, its mechanism of action remains not thoroughly explained. Transcriptomic analyses using metformin in different cell types reveal that only protein-coding genes are considered. We aimed to characterize lncRNA isoforms that were differentially affected by metformin treatment on multiple human cell types (three cancer, two non-cancer) and to provide insights into the lncRNA regulation by this drug. We selected six series to perform a differential expression (DE) isoform analysis. We also inferred the biological roles for lncRNA DE isoforms using in silico tools. We found the same isoform of an lncRNA (AC016831.6-205) highly expressed in all six metformin series, which has a second exon putatively coding for a peptide with relevance to the drug action. Moreover, the other two lncRNA isoforms (ZBED5-AS1-207 and AC125807.2-201) may also behave as cis-regulatory elements to the expression of transcripts in their vicinity. Our results strongly reinforce the importance of considering DE isoforms of lncRNA for understanding metformin mechanisms at the molecular level.

4.
Genomics ; 113(6): 3762-3773, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34530104

RESUMO

The Pseudomonas putida group comprises strains with biotechnological and clinical relevance. P. alloputida was proposed as a new species and highlighted the misclassification of P. putida. Nevertheless, the population structure of P. alloputida remained unexplored. We retrieved 11,025 Pseudomonas genomes and used P. alloputida Kh7T to delineate the species. The P. alloputida population structure comprises at least 7 clonal complexes (CCs). Clinical isolates are mainly found in CC4 and acquired resistance genes are present at low frequency in plasmids. Virulence profiles support the potential of CC7 members to outcompete other plant or human pathogens through a type VI secretion system. Finally, we found that horizontal gene transfer had an important role in shaping the ability of P. alloputida to bioremediate aromatic compounds such as toluene. Our results provide the grounds to understand P. alloputida genetic diversity and its potential for biotechnological applications.


Assuntos
Transferência Genética Horizontal , Pseudomonas , Humanos , Filogenia , Plasmídeos , Pseudomonas/genética
5.
RNA Biol ; 18(11): 1905-1919, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33499731

RESUMO

RNA modifications are dynamic chemical entities that expand the RNA lexicon and regulate RNA fate. The most abundant modification present in mRNAs, N6-methyladenosine (m6A), has been implicated in neurogenesis and memory formation. However, whether additional RNA modifications may be playing a role in neuronal functions and in response to environmental queues is largely unknown. Here we characterize the biochemical function and cellular dynamics of two human RNA methyltransferases previously associated with neurological dysfunction, TRMT1 and its homolog, TRMT1-like (TRMT1L). Using a combination of next-generation sequencing, LC-MS/MS, patient-derived cell lines and knockout mouse models, we confirm the previously reported dimethylguanosine (m2,2G) activity of TRMT1 in tRNAs, as well as reveal that TRMT1L, whose activity was unknown, is responsible for methylating a subset of cytosolic tRNAAla(AGC) isodecoders at position 26. Using a cellular in vitro model that mimics neuronal activation and long term potentiation, we find that both TRMT1 and TRMT1L change their subcellular localization upon neuronal activation. Specifically, we observe a major subcellular relocalization from mitochondria and other cytoplasmic domains (TRMT1) and nucleoli (TRMT1L) to different small punctate compartments in the nucleus, which are as yet uncharacterized. This phenomenon does not occur upon heat shock, suggesting that the relocalization of TRMT1 and TRMT1L is not a general reaction to stress, but rather a specific response to neuronal activation. Our results suggest that subcellular relocalization of RNA modification enzymes may play a role in neuronal plasticity and transmission of information, presumably by addressing new targets.


Assuntos
Encéfalo/metabolismo , Núcleo Celular/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Frações Subcelulares/metabolismo , tRNA Metiltransferases/metabolismo , Animais , Feminino , Camundongos , Camundongos Knockout , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurônios/citologia , tRNA Metiltransferases/genética
6.
Yeast ; 37(12): 625-637, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33161614

RESUMO

Yeast communities associated with cacti were studied in three ecosystems of Southeast, Central and North Brazil. A total of 473 yeast strains belonging to 72 species were isolated from 190 samples collected. Cactophilic yeast species were prevalent in necrotic tissues, flowers, fruits and insects of cacti collected in Southeast and North Brazil. Pichia cactophila, Candida sonorensis and species of the Sporopachydermia complex were the most prevalent cactophilic species in Southeast and Central regions. Kodamaea nitidulidarum, Candida restingae and Wickerhamiella cacticola were frequently associated with cactus flowers and fruits. The diversity of yeasts associated with the substrates studied was high. Twenty-one novel species were found. One is described here as Kluyveromyces starmeri sp. nov. based on 21 isolates obtained from necrotic tissues, flowers, fruits and associated insects of the columnar cacti Cereus saddianus, Micranthocereus dolichospermaticus and Pilosocereus arrabidae in two different ecosystems in Brazil. Phylogenetic analyses of sequences encoding the gene of the small subunit (SSU) rRNA gene, the internal transcribed spacer, the 5.8S rRNA gene and the D1/D2 domains of the large subunit (LSU) rRNA showed that the species is related to Kluyveromyces dobzhanskii, Kluyveromyces lactis and Kluyveromyces marxianus. Phylogenomic analyses based on 1264 conserved genes shared among the new species and 19 other members of the Saccharomycetaceae confirmed this phylogenetic relationship. The holotype is K. starmeri sp. nov. CBS 16103T (=UFMG-CM-Y3682T ). The Mycobank number is MB 836817.


Assuntos
Cactaceae/microbiologia , Ecossistema , Kluyveromyces/classificação , Kluyveromyces/genética , Micobioma/genética , Filogenia , Leveduras/genética , Brasil , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Variação Genética , Genoma Fúngico , Geografia , Técnicas de Tipagem Micológica , RNA Ribossômico/genética , Leveduras/classificação
7.
Pharmacogenomics ; 21(8): 509-520, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32427048

RESUMO

Aim: GDF15 levels are a biomarker for metformin use. We performed the functional annotation of noncoding genome-wide association study (GWAS) SNPs for GDF15 levels and the Genotype-Tissue Expression (GTEx)-expression quantitative trait loci (eQTLs) for GDF15 expression within metformin-activated enhancers around GDF15. Materials & methods: These enhancers were identified using chromatin immunoprecipitation followed by sequencing data for active (H3K27ac) and silenced (H3K27me3) histone marks on human hepatocytes treated with metformin, Encyclopedia of DNA Elements data and cis-regulatory elements assignment tools. Results: The GWAS lead SNP rs888663, the SNP rs62122429 associated with GDF15 levels in the Outcome Reduction with Initial Glargine Intervention trial, and the GTEx-expression quantitative trait locus rs4808791 for GDF15 expression in whole blood are located in a metformin-activated enhancer upstream of GDF15 and tightly linked in Europeans and East Asians. Conclusion: Noncoding variation within a metformin-activated enhancer may increase GDF15 expression and help to predict GDF15 levels.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Fator 15 de Diferenciação de Crescimento/biossíntese , Fator 15 de Diferenciação de Crescimento/genética , Metformina/farmacologia , Polimorfismo de Nucleotídeo Único/genética , Linhagem Celular , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Polimorfismo de Nucleotídeo Único/efeitos dos fármacos
8.
Genome Res ; 30(7): 1073-1081, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32079618

RESUMO

Long noncoding RNAs (lncRNAs) have emerged as key coordinators of biological and cellular processes. Characterizing lncRNA expression across cells and tissues is key to understanding their role in determining phenotypes, including human diseases. We present here FC-R2, a comprehensive expression atlas across a broadly defined human transcriptome, inclusive of over 109,000 coding and noncoding genes, as described in the FANTOM CAGE-Associated Transcriptome (FANTOM-CAT) study. This atlas greatly extends the gene annotation used in the original recount2 resource. We demonstrate the utility of the FC-R2 atlas by reproducing key findings from published large studies and by generating new results across normal and diseased human samples. In particular, we (a) identify tissue-specific transcription profiles for distinct classes of coding and noncoding genes, (b) perform differential expression analysis across thirteen cancer types, identifying novel noncoding genes potentially involved in tumor pathogenesis and progression, and (c) confirm the prognostic value for several enhancer lncRNAs expression in cancer. Our resource is instrumental for the systematic molecular characterization of lncRNA by the FANTOM6 Consortium. In conclusion, comprised of over 70,000 samples, the FC-R2 atlas will empower other researchers to investigate functions and biological roles of both known coding genes and novel lncRNAs.


Assuntos
Transcriptoma , Bases de Dados Genéticas , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Neoplasias/genética , Especificidade de Órgãos , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo
9.
Front Neurosci ; 12: 243, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719497

RESUMO

The amount of regulatory RNA encoded in the genome and the extent of RNA editing by the post-transcriptional deamination of adenosine to inosine (A-I) have increased with developmental complexity and may be an important factor in the cognitive evolution of animals. The newest member of the A-I editing family of ADAR proteins, the vertebrate-specific ADAR3, is highly expressed in the brain, but its functional significance is unknown. In vitro studies have suggested that ADAR3 acts as a negative regulator of A-I RNA editing but the scope and underlying mechanisms are also unknown. Meta-analysis of published data indicates that mouse Adar3 expression is highest in the hippocampus, thalamus, amygdala, and olfactory region. Consistent with this, we show that mice lacking exon 3 of Adar3 (which encodes two double stranded RNA binding domains) have increased levels of anxiety and deficits in hippocampus-dependent short- and long-term memory formation. RNA sequencing revealed a dysregulation of genes involved in synaptic function in the hippocampi of Adar3-deficient mice. We also show that ADAR3 transiently translocates from the cytoplasm to the nucleus upon KCl-mediated activation in SH-SY5Y cells. These results indicate that ADAR3 contributes to cognitive processes in mammals.

10.
Int J Syst Evol Microbiol ; 68(7): 2306-2312, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29786499

RESUMO

Two isolates representing a new species of Scheffersomyces were isolated from rotting wood samples collected in an Amazonian forest ecosystem in Brazil. Analysis of the sequences of the D1/D2 domains showed that this new species is phylogenetically related to Scheffersomyces NYMU 15730, a species without a formal description, and the two are in an early emerging position with respect to the xylose-fermenting subclade containing Scheffersomyces titanus and Scheffersomyces stipitis. Phylogenomic analyses using 474 orthologous genes placed the new species in an intermediary position between Scheffersomyces species and the larger genus Spathaspora and the Candida albicans/Lodderomyces clade. The novel species, Scheffersomyces stambukii f.a., sp. nov., is proposed to accommodate these isolates. The type strain of Scheffersomyces stambukii sp. nov. is UFMG-CM-Y427T (=CBS 14217T). The MycoBank number is MB 824093. In addition, we studied the xylose metabolism of this new species.


Assuntos
Filogenia , Saccharomycetales/classificação , Madeira/microbiologia , Xilose/metabolismo , Brasil , DNA Fúngico/genética , Fermentação , Florestas , Técnicas de Tipagem Micológica , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNA
11.
Int J Syst Evol Microbiol ; 67(10): 3798-3805, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28884677

RESUMO

Two yeast isolates producing asci-containing elongate ascospores with curved ends typical of the genus Spathaspora were isolated from rotting wood samples collected in an Atlantic rainforest ecosystem in Brazil. Phylogenetic analysis of the LSU rRNA gene D1/D2 domain sequences demonstrated that the strains represent a new species and placed it next to Candida blackwellae, in a clade that also contains Candida albicans and Candida dubliniensis. Other sequences of the ribosomal gene cluster supported same placementin the same clade, and a phylogenomic analysis placed this new species in an early emerging position relative to the larger C. albicans/Lodderomyces clade. One interpretation is that the genus Spathaspora is, in fact, paraphyletic. In conformity with this view, we propose the novel species Spathaspora boniae sp. nov. to accommodate the isolates. The type strain of Spathaspora boniae sp. nov. is UFMG-CM-Y306T (=CBS 13262T). The MycoBank number is MB 821297. A detailed analysis of xylose metabolism was conducted for the new species.


Assuntos
Filogenia , Saccharomycetales/classificação , Madeira/microbiologia , Xilose/metabolismo , Brasil , DNA Fúngico/genética , Fermentação , Genes de RNAr , Técnicas de Tipagem Micológica , RNA Ribossômico 16S/genética , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNA , Esporos Fúngicos
12.
Genome Announc ; 5(20)2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28522704

RESUMO

Here we report the draft genome sequence of Metschnikowia australis strain UFMG-CM-Y6158, a yeast endemic to Antarctica. We isolated the strain from the marine seaweed Acrosiphonia arcta (Chlorophyta). The genome is 14.3 Mb long and contains 4,442 predicted protein-coding genes.

13.
Genom Data ; 11: 120-121, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28180086

RESUMO

We present the draft genome sequence of the type strain of the yeast Sugiyamaella xylanicola UFMG-CM-Y1884T (= UFMG-CA-32.1T = CBS 12683T), a xylan-degrading species capable of fermenting d-xylose to ethanol. The assembled genome has a size of ~ 13.7 Mb and a GC content of 33.8% and contains 5971 protein-coding genes. We identified 15 genes with significant similarity to the d-xylose reductase gene from several other fungal species. The draft genome assembled from whole-genome shotgun sequencing of the yeast Sugiyamaella xylanicola UFMG-CM-Y1884T (= UFMG-CA-32.1T = CBS 12683T) has been deposited at DDBJ/ENA/GenBank under the accession number MQSX00000000 under version MQSX01000000.

14.
Mol Biochem Parasitol ; 212: 55-67, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28137628

RESUMO

In recent years, proteasome involvement in the damage response induced by ionizing radiation (IR) became evident. However, whether proteasome plays a direct or indirect role in IR-induced damage response still unclear. Trypanosoma cruzi is a human parasite capable of remarkable high tolerance to IR, suggesting a highly efficient damage response system. Here, we investigate the role of T. cruzi proteasome in the damage response induced by IR. We exposed epimastigotes to high doses of gamma ray and we analyzed the expression and subcellular localization of several components of the ubiquitin-proteasome system. We show that proteasome inhibition increases IR-induced cell growth arrest and proteasome-mediated proteolysis is altered after parasite exposure. We observed nuclear accumulation of 19S and 20S proteasome subunits in response to IR treatments. Intriguingly, the dynamic of 19S particle nuclear accumulation was more similar to the dynamic observed for Rad51 nuclear translocation than the observed for 20S. In the other hand, 20S increase and nuclear translocation could be related with an increase of its regulator PA26 and high levels of proteasome-mediated proteolysis in vitro. The intersection between the opposed peaks of 19S and 20S protein levels was marked by nuclear accumulation of both 20S and 19S together with Ubiquitin, suggesting a role of ubiquitin-proteasome system in the nuclear protein turnover at the time. Our results revealed the importance of proteasome-mediated proteolysis in T. cruzi IR-induced damage response suggesting that proteasome is also involved in T. cruzi IR tolerance. Moreover, our data support the possible direct/signaling role of 19S in DNA damage repair. Based on these results, we speculate that spatial and temporal differences between the 19S particle and 20S proteasome controls proteasome multiple roles in IR damage response.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Radiação Ionizante , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/efeitos da radiação , Ubiquitina/metabolismo , Reparo do DNA , Proteólise , Resposta a Proteínas não Dobradas
15.
Sci Rep ; 7: 40127, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28054653

RESUMO

Despite their abundance, the molecular functions of long non-coding RNAs in mammalian nervous systems remain poorly understood. Here we show that the long non-coding RNA, NEAT1, directly modulates neuronal excitability and is associated with pathological seizure states. Specifically, NEAT1 is dynamically regulated by neuronal activity in vitro and in vivo, binds epilepsy-associated potassium channel-interacting proteins including KCNAB2 and KCNIP1, and induces a neuronal hyper-potentiation phenotype in iPSC-derived human cortical neurons following antisense oligonucleotide knockdown. Next generation sequencing reveals a strong association of NEAT1 with increased ion channel gene expression upon activation of iPSC-derived neurons following NEAT1 knockdown. Furthermore, we show that while NEAT1 is acutely down-regulated in response to neuronal activity, repeated stimulation results in NEAT1 becoming chronically unresponsive in independent in vivo rat model systems relevant to temporal lobe epilepsy. We extended previous studies showing increased NEAT1 expression in resected cortical tissue from high spiking regions of patients suffering from intractable seizures. Our results indicate a role for NEAT1 in modulating human neuronal activity and suggest a novel mechanistic link between an activity-dependent long non-coding RNA and epilepsy.


Assuntos
Encéfalo/fisiologia , Excitabilidade Cortical , Neurônios/fisiologia , RNA Longo não Codificante/metabolismo , Convulsões/patologia , Animais , Células Cultivadas , Humanos , Proteínas Interatuantes com Canais de Kv/metabolismo , Células-Tronco Pluripotentes/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ligação Proteica , Ratos , Superfamília Shaker de Canais de Potássio
16.
Nutrition ; 31(11-12): 1344-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26429653

RESUMO

OBJECTIVES: The rs9939609 single nucleotide polymorphism (SNP) in the fat mass and obesity-associated (FTO) gene is involved in obesity. Few studies have been conducted on patients who underwent bariatric surgery. The aim of this study was to evaluate the influence of FTO SNPs on body weight, body composition, and weight regain during a 60-mo follow-up period after bariatric surgery. METHODS: The rs9939609 was genotyped in 146 individuals using a real-time polymerase chain reaction TaqMan assay. Data for lifestyle, comorbidities, body weight, body mass index (BMI), excess weight loss (EWL), and body composition were obtained before and 6, 12, 18, 24, 36, 48, and 60 mo after surgery. Data were analyzed by comparing two groups of patients according to rs9939609 FTO gene polymorphism. Mixed-regression models were constructed to evaluate the dynamics of body weight, BMI, and EWL over time in female patients. RESULTS: No differences were observed between the groups during the first 24 mo after surgery. After 36, 48, and 60 mo, body weight, fat mass, and BMI were higher, whereas fat-free mass and EWL were lower in the FTO-SNP patient group. Weight regain was more frequent and occurred sooner in the FTO-SNP group. CONCLUSIONS: There is a different evolution of weight loss in obese carriers of the FTO gene variant rs9939609 after bariatric surgery. However, this pattern was evident at only 2 y postbariatric surgery, inducing a lower proportion of surgery success and a greater and earlier weight regain.


Assuntos
Cirurgia Bariátrica , Manutenção do Peso Corporal , Genótipo , Obesidade Mórbida/genética , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Redução de Peso , Adolescente , Adulto , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Composição Corporal , Índice de Massa Corporal , Etnicidade , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/cirurgia , Resultado do Tratamento , Adulto Jovem
17.
Front Genet ; 5: 174, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24966869

RESUMO

Schistosomiasis is a neglected tropical disease, and after malaria, is the second most important tropical disease in public health. A vaccine that reduces parasitemia is desirable to achieve mass treatment with a low cost. Although potential antigens have been identified and tested in clinical trials, no effective vaccine against schistosomiasis is available. Y-box-binding proteins (YBPs) regulate gene expression and participate in a variety of cellular processes, including transcriptional and translational regulation, DNA repair, cellular proliferation, drug resistance, and stress responses. The Schistosoma mansoni ortholog of the human YB-1, SMYB1, is expressed in all stages of the parasite life cycle. Although SMYB1 binds to DNA or RNA oligonucleotides, immunohistochemistry assays demonstrated that it is primarily localized in the cytoplasm of parasite cells. In addition, SMYB1 interacts with a protein involved in mRNA processing, suggesting that SMYB1 functions in the turnover, transport, and/or stabilization of RNA molecules during post-transcriptional gene regulation. Here we report the potential of SMYB1 as a vaccine candidate. We demonstrate that recombinant SMYB1 stimulates the production of high levels of specific IgG1 antibodies in a mouse model. The observed levels of specific IgG1 and IgG2a antibodies indicate an actual protection against cercariae challenge. Animals immunized with rSMYB1 exhibited a 26% reduction in adult worm burden and a 28% reduction in eggs retained in the liver. Although proteins from the worm tegument are considered optimal targets for vaccine development, this study demonstrates that unexposed cytoplasmic proteins can reduce the load of intestinal worms and the number of eggs retained in the liver.

18.
Genome Announc ; 2(1)2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24435867

RESUMO

The draft genome sequence of the yeast Spathaspora arborariae UFMG-HM19.1A(T) (CBS 11463 = NRRL Y-48658) is presented here. The sequenced genome size is 12.7 Mb, consisting of 41 scaffolds containing a total of 5,625 predicted open reading frames, including many genes encoding enzymes and transporters involved in d-xylose fermentation.

19.
Front Genet ; 4: 199, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130571

RESUMO

THE SPLICED LEADER (SL) IS A GENE THAT GENERATES A FUNCTIONAL NCRNA THAT IS COMPOSED OF TWO REGIONS: an intronic region of unknown function (SLi) and an exonic region (SLe), which is transferred to the 5' end of independent transcripts yielding mature mRNAs, in a process known as spliced leader trans-splicing (SLTS). The best described function for SLTS is to solve polycistronic transcripts into monocistronic units, specifically in Trypanosomatids. In other metazoans, it is speculated that the SLe addition could lead to increased mRNA stability, differential recruitment of the translational machinery, modification of the 5' region or a combination of these effects. Although important aspects of this mechanism have been revealed, several features remain to be elucidated. We have analyzed 157 SLe sequences from 148 species from seven phyla and found a high degree of conservation among the sequences of species from the same phylum, although no considerable similarity seems to exist between sequences of species from different phyla. When analyzing case studies, we found evidence that a given SLe will always be related to a given set of transcripts in different species from the same phylum, and therefore, different SLe sequences from the same species would regulate different sets of transcripts. In addition, we have observed distinct transcript categories to be preferential targets for the SLe addition in different phyla. This work sheds light into crucial and controversial aspects of the SLTS mechanism. It represents a comprehensive study concerning various species and different characteristics of this important post-transcriptional regulatory mechanism.

20.
PLoS Negl Trop Dis ; 7(6): e2279, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23785540

RESUMO

The main consequence of oxidative stress is the formation of DNA lesions, which can result in genomic instability and lead to cell death. Guanine is the base that is most susceptible to oxidation, due to its low redox potential, and 8-oxoguanine (8-oxoG) is the most common lesion. These characteristics make 8-oxoG a good cellular biomarker to indicate the extent of oxidative stress. If not repaired, 8-oxoG can pair with adenine and cause a G:C to T:A transversion. When 8-oxoG is inserted during DNA replication, it could generate double-strand breaks, which makes this lesion particularly deleterious. Trypanosoma cruzi needs to address various oxidative stress situations, such as the mammalian intracellular environment and the triatomine insect gut where it replicates. We focused on the MutT enzyme, which is responsible for removing 8-oxoG from the nucleotide pool. To investigate the importance of 8-oxoG during parasite infection of mammalian cells, we characterized the MutT gene in T. cruzi (TcMTH) and generated T. cruzi parasites heterologously expressing Escherichia coli MutT or overexpressing the TcMTH enzyme. In the epimastigote form, the recombinant and wild-type parasites displayed similar growth in normal conditions, but the MutT-expressing cells were more resistant to hydrogen peroxide treatment. The recombinant parasite also displayed significantly increased growth after 48 hours of infection in fibroblasts and macrophages when compared to wild-type cells, as well as increased parasitemia in Swiss mice. In addition, we demonstrated, using western blotting experiments, that MutT heterologous expression can influence the parasite antioxidant enzyme protein levels. These results indicate the importance of the 8-oxoG repair system for cell viability.


Assuntos
Dano ao DNA , Guanina/análogos & derivados , Estresse Oxidativo , Trypanosoma cruzi/fisiologia , Animais , Sobrevivência Celular , Células Cultivadas , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Modelos Animais de Doenças , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Fibroblastos/parasitologia , Expressão Gênica , Guanina/metabolismo , Peróxido de Hidrogênio/toxicidade , Macrófagos/parasitologia , Camundongos , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Parasitemia/parasitologia , Parasitemia/patologia , Pirofosfatases/genética , Pirofosfatases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...